All content on this site is intended for healthcare professionals only. By acknowledging this message and accessing the information on this website you are confirming that you are a Healthcare Professional. If you are a patient or carer, please visit the International Myeloma Foundation or HealthTree for Multiple Myeloma.
The mm Hub website uses a third-party service provided by Google that dynamically translates web content. Translations are machine generated, so may not be an exact or complete translation, and the mm Hub cannot guarantee the accuracy of translated content. The mm and its employees will not be liable for any direct, indirect, or consequential damages (even if foreseeable) resulting from use of the Google Translate feature. For further support with Google Translate, visit Google Translate Help.
The Multiple Myeloma Hub is an independent medical education platform, sponsored by Bristol Myers Squibb, GSK, Johnson & Johnson, Pfizer, Roche and Sanofi. The levels of sponsorship listed are reflective of the amount of funding given. View funders.
Now you can support HCPs in making informed decisions for their patients
Your contribution helps us continuously deliver expertly curated content to HCPs worldwide. You will also have the opportunity to make a content suggestion for consideration and receive updates on the impact contributions are making to our content.
Find out moreCreate an account and access these new features:
Bookmark content to read later
Select your specific areas of interest
View multiple myeloma content recommended for you
Multiple Myeloma (MM) is a heterogeneous disease with complex genetics. Many studies have now set their focus on unraveling the genetic complexity of MM with the aim to understand treatment resistance. Despite the significant improvement in outcome for MM patients through the use of novel agents, treatment can be selective for specific clones that are present when the MM patient is first diagnosed.
Maximilian Merz from Medizinische Klinik, University Hospital of Heidelberg, Heidelberg, Germany, along with his colleagues, investigated subclonal cytogenetic aberrations (CA) with the use of interphase fluorescence in situ hybridization (iFISH), in Newly Diagnosed (ND) MM patients (pts).The prognostic significance in pts with or without bortezomib treatment and tandem ASCT was also studied, within the German part of the prospective Haemato Oncology Foundation for Adults in the Netherlands (HOVON)–65/German-Speaking Myeloma Multicenter Group (GMMG)–HD4 trial. GMMG pts were randomly assigned to either arm A: 3 cycles of vincristine, adriamycin, and dexamethasone followed by tandem ASCT and thalidomide maintenance therapy for 2 years or arm B: 3 cycles of bortezomib, adriamycin, dexamethasone (PAD), followed by tandem ASCT and bortezomib maintenance therapy for two years. The study was published in the January 2018 edition of Blood Advances.
This study demonstrated, for the first time, the association of clonal heterogeneity with a poor outcome. It also showed that clonal heterogeneity is a common phenomenon in MM. A higher frequency of gains and deletions of MYC on a subclonal level were also found, although they were only associated with adverse outcomes when present as a main clone. High-risk patients who do not display any subclones were found to benefit from continuous bortezomib treatment. However, it must be noted that without whole-genome data, the true number of subclones could be underestimated. Future studies will include investigating the subclones on a mutational level in order to elucidate mechanisms that lead to the observed.
References
Your opinion matters
Which of the following factors is most important to you when selecting a treatment for patients with multiple myeloma?