All content on this site is intended for healthcare professionals only. By acknowledging this message and accessing the information on this website you are confirming that you are a Healthcare Professional. If you are a patient or carer, please visit the International Myeloma Foundation or HealthTree for Multiple Myeloma.
The mm Hub website uses a third-party service provided by Google that dynamically translates web content. Translations are machine generated, so may not be an exact or complete translation, and the mm Hub cannot guarantee the accuracy of translated content. The mm and its employees will not be liable for any direct, indirect, or consequential damages (even if foreseeable) resulting from use of the Google Translate feature. For further support with Google Translate, visit Google Translate Help.
The Multiple Myeloma Hub is an independent medical education platform, sponsored by Bristol Myers Squibb, GSK, Johnson & Johnson, Pfizer, Roche and Sanofi. The levels of sponsorship listed are reflective of the amount of funding given. View funders.
Now you can support HCPs in making informed decisions for their patients
Your contribution helps us continuously deliver expertly curated content to HCPs worldwide. You will also have the opportunity to make a content suggestion for consideration and receive updates on the impact contributions are making to our content.
Find out moreCreate an account and access these new features:
Bookmark content to read later
Select your specific areas of interest
View multiple myeloma content recommended for you
Inter-disciplinary subjects are often at the forefront of new developments in Medicine, as researchers look for better means to improve diagnostics and monitor treatment progression. A prime example recently in MM is the development of a microfluidic device, through a collaboration between two researchers: Mohammed A. Qasaimeh working across three departments – the Division of Engineering, New York University, Abu Dhabi, the Mechanical and Aerospace Engineering Department, New York University, USA and the Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, USA, along with Yichao C. Wu, also from MIT, along with a team of researchers.
Their study, published in Scientific Reports in April 2017, describes the microfluidic cell capture of plasma cells from a small blood sample using an antibody against CD138, an antigen highly expressed on plasma cells.
This microfluidic device could change the way in which MM patients are diagnosed, replacing the highly invasive and painful procedure of bone marrow biopsy that can only be carried out in certain hospitals by well-trained experts, with a high-throughput technology requiring only a few milliliters of blood. This can work as a standalone technology to measure both cell number, as an indicator of MM, along with clonal information about the cancer type (kappa or lambda). This would decrease hospital costs and enable more frequent monitoring of patients from initial diagnosis, throughout their treatment journey. In addition, the ability to stain captured cells with an array of antibodies paves the way for tests that could further define the nature of an individual’s disease, and help expand our knowledge of MM biology in general.
The necessity for bone marrow aspiration and the lack of highly sensitive assays to detect residual disease present challenges for effective management of multiple myeloma (MM), a plasma cell cancer. We show that a microfluidic cell capture based on CD138 antigen, which is highly expressed on plasma cells, permits quantitation of rare circulating plasma cells (CPCs) in blood and subsequent fluorescence-based assays. The microfluidic device is based on a herringbone channel design, and exhibits an estimated cell capture efficiency of ~40-70%, permitting detection of <10 CPCs/mL using 1-mL sample volumes, which is difficult using existing techniques. In bone marrow samples, the microfluidic-based plasma cell counts exhibited excellent correlation with flow cytometry analysis. In peripheral blood samples, the device detected a baseline of 2-5 CD138+ cells/mL in healthy donor blood, with significantly higher numbers in blood samples of MM patients in remission (20-24 CD138+ cells/mL), and yet higher numbers in MM patients exhibiting disease (45-184 CD138+ cells/mL). Analysis of CPCs isolated using the device was consistent with serum immunoglobulin assays that are commonly used in MM diagnostics. These results indicate the potential of CD138-based microfluidic CPC capture as a useful 'liquid biopsy' that may complement or partially replace bone marrow aspiration.
Your opinion matters
Which of the following factors is most important to you when selecting a treatment for patients with multiple myeloma?