The mm Hub website uses a third-party service provided by Google that dynamically translates web content. Translations are machine generated, so may not be an exact or complete translation, and the mm Hub cannot guarantee the accuracy of translated content. The mm and its employees will not be liable for any direct, indirect, or consequential damages (even if foreseeable) resulting from use of the Google Translate feature. For further support with Google Translate, visit Google Translate Help.
The Multiple Myeloma Hub is an independent medical education platform, sponsored by Bristol Myers Squibb, GSK, Johnson & Johnson, Pfizer, Roche and Sanofi. The levels of sponsorship listed are reflective of the amount of funding given. View funders.
Now you can support HCPs in making informed decisions for their patients
Your contribution helps us continuously deliver expertly curated content to HCPs worldwide. You will also have the opportunity to make a content suggestion for consideration and receive updates on the impact contributions are making to our content.
Find out moreCreate an account and access these new features:
Bookmark content to read later
Select your specific areas of interest
View mm content recommended for you
Bispecific antibodies are becoming increasingly central in the treatment of many patients with relapsed/refractory multiple myeloma (RRMM). However, an increased risk of severe infection, including those resulting in death, has been reported from emerging clinical trials of bispecific antibodies. An understanding of the nature of infection, including localization, pathogens, and risk factors, is vital to better manage these infections, improve survival, and improve patient quality of life.
Here, we summarize a multicenter, retrospective study, conducted in France by Jourdes et al. and published in the journal Clinical Microbiology and Infection, on the incidence and characteristics of infections following treatment with bispecific antibody therapy.
Figure 1. Patient population and prior bispecific antibody therapy*
BCMA, B-cell maturation antigen; GPRC5D, G-protein-coupled receptor class C group 5 member D.
*Adapted from Jourdes, et al.1
Figure 2. Site of infection following treatment with bispecific antibody therapy*
CNS, central nervous system; GI, gastrointestinal; RTI, respiratory tract infection.
Created with BioRender.com.
*Data from Jourdes, et al.1
Figure 3A. Pathogen distribution of infections following treatment with bispecific antibody therapy*
*Data from Jourdes, et al.1
Figure 3B. Pathogens identified underlying infections following treatment with bispecific antibody therapy*
CMV, cytomegalovirus; HBV, hepatitis B virus; HSV, herpes simplex virus; JC, John Cunningham; SPP, several species; VZV, varicella zoster virus.
*Data from Jourdes, et al.1
Overall, the majority of patients treated with bispecific antibodies developed an infection, with 53% of infections at Grade 3 or higher, 44% resulting in treatment modification, and 9% in death.
The influence of severe infections on patient outcomes and quality of life is considerable, highlighting this group as key for research into prevention strategies. Patients also treated with corticosteroids are a particularly high-risk group, warranting careful observation and rational consideration of treatment strategies.
References
Please indicate your level of agreement with the following statements:
The content was clear and easy to understand
The content addressed the learning objectives
The content was relevant to my practice
I will change my clinical practice as a result of this content