All content on this site is intended for healthcare professionals only. By acknowledging this message and accessing the information on this website you are confirming that you are a Healthcare Professional. If you are a patient or carer, please visit the International Myeloma Foundation or HealthTree for Multiple Myeloma.
Introducing
Now you can personalise
your Multiple Myeloma Hub experience!
Bookmark content to read later
Select your specific areas of interest
View content recommended for you
Find out moreThe Multiple Myeloma Hub website uses a third-party service provided by Google that dynamically translates web content. Translations are machine generated, so may not be an exact or complete translation, and the Multiple Myeloma Hub cannot guarantee the accuracy of translated content. The Multiple Myeloma Hub and its employees will not be liable for any direct, indirect, or consequential damages (even if foreseeable) resulting from use of the Google Translate feature. For further support with Google Translate, visit Google Translate Help.
The Multiple Myeloma Hub is an independent medical education platform, sponsored by Bristol Myers Squibb, GSK, Pfizer, Roche and Sanofi. The levels of sponsorship listed are reflective of the amount of funding given. Digital educational resources delivered on the Multiple Myeloma Hub are supported by an educational grant from Janssen Biotech, Inc. View funders.
Bookmark this article
Currently, more than half of the 700 million people aged 65 years or older live in low- and middle-income countries (LMICs).1 This is set to increase to over two thirds by 2050, with the most rapid increases seen in the least developed countries.2 With this rapidly aging population comes a significant chronic disease burden, and hematologic malignancies make up a notable part of this. Significant discrepancy exists in outcomes globally for patients of all ages with a hematologic malignancy. Particularly striking though is the discrepancy between older people who live in areas with a low Human Development Index and those who live in areas with a high Human Development Index; the mortality-to-incidence ratios in these populations are 96% and 61%, respectively.3
Most geriatric hematology clinical and research programs to date have been implemented in cancer centers in high-income countries (HICs); few programs exist in LMICs, though the International Society of Geriatric Oncology (SIOG) has developed recommendations with the aim of improving cancer care for older people globally, including the creation and implementation of geriatric oncology policies, clinics, and training programs. Soto-Perez-de-Celis and colleagues in The Lancet Healthy Longevity provide an overview of the current global landscape of geriatric oncology and hematology, with a particular focus on resource limited settings.4 Broadly, the authors consider clinical practice, research, education, and partnerships, and their findings and recommendations are summarized in this article.
Given the significant disease burden of the aging population, LMICs need to be set up not only to treat patients with disease, but to measure and understand the disease itself. Whilst the World Health Organization (WHO) recommends disease registries to appreciate regional needs, the proportion of the population covered by such registries is very low in resource poor settings. More than two thirds of low-income countries do not have a national cancer control plan or cancer registries.5
Healthcare systems in many LMICs fail to meet population needs; this is due in large part to lack of financial expenditure and fragmented healthcare structures that struggle to provide for the poor and unemployed. Other common challenges include lack of social security insurance, lack of resources, poor infrastructure, and inadequately trained healthcare professionals.
Mortality rates due to hematologic malignancies are disproportionately higher in LMICs due to low access to health care.6 Specific barriers to accessing high quality care for hematologic malignancies include the following:
Further barriers to high quality care among older patients include a high prevalence of ageism, cancer-related stigma, and the tendency for older people and their families to hold fatalistic views with regard to their cancer and cancer treatment.
The wide variation in the individual needs of older patients necessitates a comprehensive geriatric assessment such that cancer therapy may be tailored to the individual’s needs. Comorbidities, cognition, psychological status, functional capacity, physical reserve, and social support are critical factors to consider, though currently there is no consensus regarding specific tools to use to make these assessments and provide the best care model, and thus often these choices depend on resource and personnel availability in each center.
SIOG recommends the use of self-administered screening tools to assess frailty, such as the Geriatric 8 (G8) screening tool or the Vulnerable Elders Survey-13 (VES-13); examples of geriatric assessment tools are shown in Table 1.7-9
Table 1. Examples of geriatric assessment tools used for the evaluation of older people with hematologic malignancies*
Screening tool |
Domains |
Purpose |
Scoring |
Type of hematologic malignancy |
Administration |
---|---|---|---|---|---|
Vulnerable Elders Survey-13 |
Age, self-rated health status, functional limitations, and functional disabilities |
Screens for risk of functional status deterioration, identifies need for complete geriatric assessment, and predicts outcomes† |
Range 0–10; cutoff ≥3 |
NHL |
Self‑administered; 5 min |
Geriatric 8 screening tool |
Age, weight loss, BMI, motor skills, psychological status, number of medications, and self-rated health status |
Identifies need for complete geriatric assessment and predicts outcomes† |
Range 0–10; cutoff ≤14 |
Leukemia, NHL, MDS |
Administered by healthcare provider; self-administered version available; 5 min |
Geriatric Assessment in Hematology |
Number of medications, gait speed, mood, ADL, self-rated health status, nutrition, psychological status, and comorbidities |
Identifies frailty among older patients with hematologic malignancies |
NA |
Leukemia, MDS, MM |
Administered by healthcare provider; 10–12 min |
Elderly Prognostic Index |
Age, ADL, instrumental ADL, comorbidity, IPI, and hemoglobin level |
Identifies frailty among older patients with DLBCL and predicts OS |
Range 0–8; risk groups: low (0–1), intermediate (2–5), and high (6–8) |
DLBCL |
Administered by healthcare provider; <10 min |
ADL, activities of daily living; BMI, body mass index; DLBCL, diffuse large B-cell lymphoma; IPI, International Prognostic Index; MDS, myelodysplastic syndromes; MM, multiple myeloma; NA, not applicable; NHL, non-Hodgkin lymphoma; OS, overall survival. |
Once higher risk patients have been identified, an in-depth geriatric assessment should take place using validated tools. Identifying geriatric deficits or syndromes, such as nutritional status, cognitive impairment, and polypharmacy, is an essential part of the assessment. The presence of frailty is particularly significant, as given its association with increased risk of treatment toxicity and higher mortality, identification of frailty can influence treatment decisions. Soto-Perez-de-Celis and colleagues summarize three models of care that can be used to implement a geriatric hematology clinic tailored depending on resources available in each healthcare setting.7,10,11
Lack of availability of geriatricians and geriatric training is a significant barrier for geriatric tailored hematologic care, a problem that is present globally but is worst in LMICs. This is considered in part to be due to lack of training and poor exposure to the field during medical school.
In 2011, SIOG considered increasing the geriatric training of the cancer workforce a top ten priority.8 Since then, a concerted effort has been made to improve training. SIOG established a yearly course, the Advanced Course in Geriatric Oncology, which has inspired other regional and national organizations to do the same. A group set up by the Spanish Society of Haematology provides virtual workshops in geriatric hematology in Spanish, which are open to attendees from Latin America. Further strategies include initiatives to include geriatric hematology and oncology sessions in local and regional hematology, geriatrics and oncology meetings and seminars. Successful workshops were developed for the annual meeting of the Geriatrics Department of the National Institute of Medical Science and Nutrition in Mexico City, which have been rolled out in other meetings as well.
Table 2 outlines the SIOG recommendations for the development of education. Despite improvements, education will remain a priority in the global advancement of care for older people. Education initiatives need to be tailored and resource-stratified based on setting, and they need to reach the largest number of professionals possible.
Table 2. Recommendations for the development of geriatric hematology in LMICs*†
Education |
Partnerships |
Clinical practice |
Research |
---|---|---|---|
Hematology training to include geriatric principles. Geriatric hematology education and activities within larger hematology meetings. Development of specialized training programs for physicians from LMICs in centers of excellence in HICs. |
Strengthen links between international societies and local hematology societies. Create global funding mechanisms for geriatric hematology. |
Develop and implement models of care. Develop resource-stratified guidelines for assessing geriatric patients. Establish national centers of excellence in the field. |
Improve worldwide availability of clinical trials for older adults with a hematologic malignancy. Strengthen research collaborations between HICs and LMICs. Evaluate the benefits of specialist units on the outcomes of patients in LMICs |
HICs, high-income countries; LMICs, low-income and middle-income countries. |
Resource stratification, as defined by WHO, is the adaptation of preventative, diagnostic, and therapeutic interventions, without disregarding an evidence-based approach, according to the level of resources available in each country.13 Resource levels are usually considered as basic, core (or limited), enhanced, and maximal, and tailored recommendations can be developed for each of these. Resource-stratified guidelines have been created by the National Comprehensive Cancer Network for the treatment of acute lymphoblastic leukemia and diffuse large B-cell lymphoma, though currently there are no resource-stratified guidelines for geriatric oncology and hematology.
Successful implementation of the models of care described by the authors—the geriatric oncology unit model, the geriatric consultation team or co-management model, and the referral model—are entirely resource dependent. For example, in basic settings without a geriatrician, hematologists or nurses could use validated geriatric screening tools to help identify patients at increased risk of adverse outcomes with more intensive treatment.
There are few geriatric oncology and hematology clinics in LMICs (and a lack of information from medical centers regarding their approaches to treating geriatric hematology patients), though the Cancer Care in the Elderly Clinic in Mexico City is a good example of a geriatric consultation model in practice. The clinic has two geriatricians and one medical oncologist on staff, as well as nutrition, physical therapy, palliative care, and social work practitioners to provide care to older patients with lymphomas and solid tumors.
Most of the research in geriatric hematology comes from clinical trials in HICs. Many barriers to conducting clinical trials exist in LMICs, including poor infrastructure, scarce funding, insufficient research expertise, and lack of protected time to conduct it.14 Furthermore, participation of researchers from LMICs in international hematology meetings is also low. Several studies, however, have been conducted in LMICs, including the following:
Whilst strong geriatric hematology programs often exist in academic cancer centers and large university hospitals in HICs, limitations in community settings in HICs may more closely mimic those of LMICs, and therefore may potentially serve as blueprints for clinical practices in such areas.
To bridge the gap between specialist cancer centers and the community, some geriatric hematology programs serve as referral centers. Community clinics may be led by a dual-trained geriatric hematologist, a hematologist with training in geriatrics, or a geriatrician providing consultative care. A multidisciplinary team approach is favored, including, for example, physical therapists, pharmacists, and dieticians, but as in LMICs, the availability of team members in the community setting is resource dependent. Since the COVID-19 pandemic, some clinics can now perform assessments and consultations remotely as well as in person. In addition to treatment decisions, they recommend supportive care interventions and help manage non-cancer comorbidities with the aim of optimizing geriatric-related vulnerabilities.
Research continues to focus on improving the identification of age-related vulnerabilities and their relationship to outcomes, longitudinal changes in age-related vulnerabilities, and the development of interventions and models of care to improve outcomes. Several studies in the US, in which older patients with hematologic malignancies and other cancers received a geriatric assessment, found that compared to usual care, patients were more likely to have discussions about goals of care and aging-related concerns and to report greater satisfaction with communication about age-related issues. Given funding for clinical trials in LMICs may be lacking, research programs such as these that focus on interventions to improve shared decision making and patient-centered care could be implemented.
Geriatric hematology remains a relatively new field even in the highly specialized cancer centers in Western Europe and the US. Soto-Perez-de-Celis and colleagues set out recommendations based on the SIOG priorities for the advancement of geriatric oncology; however, given the significant hematologic disease burden and challenges that are present regarding LMICs, international collaboration will be essential for the ongoing development of this field.
Your opinion matters
Subscribe to get the best content related to multiple myeloma delivered to your inbox